Supplementary Materials for the Paper:
BioVAE: a pre-trained latent variable language model for
biomedical text mining

A BioVAE Model

We present the overview of our BioVAE model in Figure 1.
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Figure 1: Overview of our BioVAE model. The last-layer hidden state hjcrs) from BERT is used as the sentence-
level representation. The latent representation z is constructed via the weight matrix Wg. For decoder, the latent
representation z is passed through the weight matrix Wp to construct the input embedding h for GPT-2 to reconstruct
the input sequence.

In the original OPTIMUS model [10], BERT weights are initialized by the pre-trained BERT-based model [4],
which is trained on general corpora (800M words of the BookCorpus and 2,500M words of English Wikipedia), and
GPT-2 weights are initialized by the pre-trained GPT-2 model [17], which is trained on 40 GB of text from WebText
created by scraping web pages.

In training our BioVAE model for biomedical domain, instead of using the BERT-based model, we initialized
BERT weights by the pre-trained SciBERT model [1], which is trained on 3.17B tokens from 1.14M papers from
Semantic Scholar containing 82% from the broad biomedical domain. We used the same pre-trained GPT-2 model [17]
since there is no such model trained on biomedical domain available.

In the evaluation of our BioVAE model on text mining tasks such as NER, REL, QA, we directly use the pre-trained
BioVAE encoder’s BERT for fine-tuning.



B Generated samples

We compare sentences generated by our BioVAE and OPTIMUS models in Table 1.

Table 1: Reconstruction samples generated by OPTIMUS and our BioVAE. (Perplexity: lower is better.)

No. | Model | Texts | Perplexity
Input Bevacizumab was discontinued in 2 patients because of nonfatal intracranial | 1.000
bleeding.
1 BioVAE Bevacizumab was discontinued in 2 patients because of nonfatal intracranial | 1.129
hemorrhage.
OPTIMUS | Dydrogesterone has not been approved for use in children under 12 years of age. | 3.070
Input TUNEL assay and microvessel density was assessed to evaluate apoptosis and | 1.000
angiogenesis.
2 BioVAE TUNEL assay and microvascular density was assessed to evaluate angiogene- | 1.120
sis and apoptosis.
OPTIMUS | Virologic tests performed on the cells were performed by the U.S. Department | 4.609
of Health and Human Services.
Input This implies that enhancing Nrf2 activity is a promising method for thwarting | 1.000
cancer.
3 BioVAE This implies that enhancing Nrf2 activity is a promising tactic for preventing | 1.362
cancer.
OPTIMUS | This may lead to the development of a therapeutic agent that can be used in the | 3.504
treatment of neurodegenerative diseases.
Input Spontaneous metastasis indicates a possible reverse correlation. 1.000
BioVAE Spontaneous transit indicates a possible reverse correlation. 2.075
4 OPTIMUS | In contrast, the fluoxetine receptor does not appear to be affected by the presence | 3.456
of fluoxetine.
Input Angiogenesis is essential for tumor growth and metastasis. 1.000
BioVAE Angiogenesis is crucial for tumor growth and metastasis. 2.283
5 OPTIMUS | Transplantation of progesterone is an important factor in the development of | 3.753
cancer.




C Discussion on results

SciBERT Baseline Our baseline is SciBERT [1]. As presented in the paper (Approach), and in Appendix A, our model consists
of two parts: an encoder and a decoder. BERT is used for the encoder, and GPT-2 is used for the decoder. In OPTIMUS [10], BERT
is initialized by the general domain pre-trained BERT-based model [4]. Instead, in our work, since we aim at biomedical domain,
we initialized BERT by the pre-trained biomedical SciBERT model [1]. During training the BioVAE model, BERT’s weights are
also updated. Therefore, we would like to investigate whether training our VAE-based language model (BioVAE) can improve the
SciBERT. In other words, we compare the BERT model before training BioVAE (the initialized pre-trained SciBERT model) with
the BERT model after training BioVAE (our BioVAE’s encoder). From the results in Table 2, our BioVAE outperforms the SciBERT
in all of the tasks.

Comparison with other pre-trained BERT models We also compare our BioVAE with the other biomedical pre-trained
BERT models: BioBERT [9] and PubMedBERT [6]. From the results in Table 2, our BioVAE also outperforms the BioBERT in all
of the tasks. PubMedBERT obtains better scores than BioVAE on REL and QA tasks, but lower performance on the NER tasks.

Discussion on PubMedBERT results It is noted that the BioBERT and SciBERT scores reported in PubMedBERT paper [6]
are different from the original scores in the BioBERT and SciBERT papers because of some changes made by the PubMedBERT’s
paper in training settings. Additionally, PubMedBERT’s evaluation scripts are not publicly available. Therefore, all scores we report
here are based on the same settings and evaluation scripts provided by the SciBERT [1], which are publicly available at SCiIBERT
repository’ (for NER and REL tasks), and BioBERT scripts [9]> for QA tasks. Based on these evaluation scripts, we replicated
the original scores of SciBERT and BioBERT reported in their papers. Since PubMedBERT’s evaluation scripts are not publicly
available, the PubMedBERT scores we report here are also based on our runs using the SciBERT and BioBERT evaluation scripts.
In this work we used SciBERT as our baseline to initialize BERT in the BioVAE. In future work, we plan to alternatively initialize
BERT in BioVAE by using the pre-trained PubMedBERT model to train the BioVAE.

Table 2: Results on the text mining test sets. The best scores are in bold, and the scores outperforming the SciBERT
baseline are underlined. We report macro F1 scores for NER, micro F1 for REL, and accuracy for QA. (d: latent size)

NER REL | QA
Model BC5CDR  NCBI  JNLPBA

PubMedBERT [6] 8727 7996  71.82 | 85.47 | 75.00
BioBERT [9] 88.85 8936  77.59 | 76.68 | 69.29
SCIBERT [1] 90.01 8857 7728 | 83.64 | 72.14

BioVAE (3 = 0.0,d, = 32) 89.85  88.85  77.82 | 83.68 | 72.86
BioVAE (8 = 0.0,d, = 768) | 90.10  88.12  77.69 | 83.05 | 72.14
BioVAE (8 = 0.5,d, = 32) 89.60  89.80  77.66 | 83.54 | 72.14
BioVAE (8 =0.5,d, = 768) | 9018  90.12  77.57 | 84.49 | 72.86

D BERT-based pre-trained language models

We discuss here the background of BERT-based pre-trained language models (PLMs) presented in Introduction. BERT stands
for Bidirectional Encoder Representations from Transformers [4]. This is a well-known and powerful language representation
model. BERT advances the state-of-the-art (SOTA) on eleven natural language processing (NLP) tasks such as question answering,
sentiment analysis, language inference etc. BERT-based is a neural-based, large pre-trained PLMs with 110M parameters. The

Thttps://github.com/allenai/scibert
Zhttps://github.com/dmis-1ab/biobert-pytorch/tree/master/question-answering



model is trained on 800M words of the BooksCorpus and 2,500M words of English Wikipedia, and freely available.> The pre-
trained BERT-based model can be fine-tuned for a wide range of tasks such as named entity recognition, question answering,
language inference, etc and achieved SOTA performances. It does not require substantial modifications and reduces the need for
many heavily-engineered task-specific architectures.

E Backgrounds

In this part, we explain in more details about the backgrounds related to pre-trained language models, deep generative models, and
variational autoencoders presented in Introduction.

E.1 Pre-trained language models (PLMs)

Language representation Neural networks have been widely applied to solve various NLP tasks. One of the foundation
and important tasks is language representation. Neural models represent language semantic and syntactic features by using low-
dimensional vectors (distributed representation) [15] (also called continuous representations or embeddings). Components of lan-
guage such as words, phrases, or sentences, etc can be represented (or embedded) into vector space models, which allow to capture
dependencies or relationships between the components.

Language models Language model is a basis of various NLP tasks. A simple concept of language model is training to predict
the next word or words in a text based on the preceding words. Neural network language models use word embeddings or vector
representations to make the predictions.

Word representations The early works of language representation task are related to word representations to learn vector rep-
resentations of words from large amounts of unstructured text data. A word embedding (or word vector) is a learned representation
in which words with similar meaning have a similar representation. The word representations from the learned vectors explicitly
encode many linguistic regularities and patterns [12, 13]. One of the powerful methods is Skip-gram [12], which finds word repre-
sentations that are useful for predicting the surrounding words in a sentence or a document. Another well-known word embedding
model is GloVe [13]. Training from large scale unlabeled text can help word vectors to capture syntactic and semantic information
of words. Pre-trained word embeddings become an essential component in many SOTA NLP architectures [7, 21].

Language model pre-training One problem of previous word representations methods is that learning word vectors only
allows a single context-independent representation for each word. In order to overcome the problem, methods of learning embed-
dings from language models have been proposed. A model called ELMo [14] learns word representations which are functions of the
entire input sentence. Each token’s representation is a combination of context-sensitive features from a left-to-right and right-to-left
language models. ELMo is trained on the 1B Word Benchmark, and advances SOTA on several NLP benchmarks [14, 20].

Feature-based and Fine-tuning After language models are trained on large amounts of unstructured text to learn represen-
tations to form pre-trained language models (PLMs), they can be applied to downstream tasks without training the models on the
large datasets from scratch. The pre-trained models such as GloVe [13], ELMo [14] are used as additional features in existing
task-specific architectures, which we call feature-based PLMs. Another strategy to applied PLMs for downstream tasks is called
fine-tuning, in which PLMs are trained on the downstream tasks by fine-tuning all pre-trained parameters with minimal task-specific
parameters (few parameters need to be learned from scratch). Two well-known and powerful fine-tuning PLMs are GPT-2 [17] and
BERT [4].

BERT BERT [4] is a PLM based on a neural network architecture called Transformer [19]. BERT is trained on 0.8B words of
the BooksCorpus and 2.5B words of English Wikipedia (3.3B words in total). BERT achieves SOTA on various downstream tasks,
and we present the details of BERT in Appendix D.

3https://huggingface.co/bert-base-cased



GPT-2 Generative Pre-trained Transformer (OpenAl GPT) [16] is also based on the Transformer architecture. The model is
trained on the BooksCorpus dataset containing more than 7,000 books from a variety of genres. GPT-2 [17] is an extension of the
OpenAl GPT, in which the model size and data size are increased. As reported in [17], the numbers parameters in the models are:
OpenAl GPT (117M), BERT (345M), and GPT-2 (1.5B). GPT-2 is trained on 40GB of text from the WebText (scraped from 45
million web pages). OpenAl GPT and GPT-2 models achieve SOTA on various NLP tasks such as language modeling, language
inference, question answering, text classification, etc.

E.2 Deep generative models (DGMs)

Data can be in various kinds such as images, videos, texts, etc. A goal of building machine learning systems is to discover pat-
terns and extract knowledge from data, then perform reasoning based on the observed data. One strategy is to approximate data
distributions, which summarize all the information about the data in a finite set of parameters.4

The basic idea of generative modeling is to train a model, which can capture the underlying distribution of the data. Generative
models provide a powerful mechanism for learning data distributions and simulating samples. Probabilistic generative model en-
ables rich data to be explained in terms of simpler latent structure. The discovered structure can be helpful such as for the purposes
of explanation, visualization, or improving generalization to unseen data. [22]

Deep learning approaches for generative models such as Generative Adversarial Networks (GANSs) [5] and Variational Autoen-
coders (VAEs) [8] have shown their ability to learn smooth representations of images, text, audio etc, which can then be used to
generate new and plausible data [18]. Generative models have many applications such as synthesizing images, videos, audios; text
translation and summarization, drug synthesis, etc [2]. Besides the short-term applications, generative models hold the potential to
automatically learn the natural features of a dataset.’

E.3 Variational autoencoders (VAEs)

VAE VAE is a powerful deep generative model to unsupervisedly learn a low-dimensional data (latent space) from a high-
dimensional data [11], and has been applied in many downstream tasks such as classification, transfer learning, text generation,
etc [3, 10]. VAE defines a joint distribution of observed inputs x and latent variables z with unknown prior distributions p(z).
Typically, the conventional and simple Gaussian prior can be chosen. The objective is to maximize the Evidence Lower Bound
(ELBO):

log po(z) > Eq,(z1a) [log pe(]2)] — K L(gy(2[2)]|(p(2)), M

where ¢4 (z|z) is known as encoder (or variational posterior) which tries to encode the input z into a latent representation z;
while pe (z|z) is known as decoder which tries to reconstruct the input x given the latent variable z.

The training objective is to minimize the reconstruction loss (compares the reconstructed output with the input z), and the
regularization loss (KL divergence, which compares the learned posterior distribution (approximate variational posterior) in the
latent space with the prior distribution, or in other words this regularisation term forces the learned posterior to be as close to the
prior as possible).

E.4 VAE-based PLMs

OPTIMUS The OPTIMUS framework [10] is a large scale VAE-based language model. The goal of OPTIMUS is to learn a
latent embedding space for sentence. OPTIMUS uses the pre-trained BERT model [4] to initialize the encoder’s weights, and the
pre-trained GPT-2 model [17] to initialize the decoder’s weights. OPTIMUS is trained on 2M Wikipedia sentences. OPTIMUS has
been shown to learn a more structured semantic space due to the use of the prior distribution in training. The pre-trained OPTIMUS
model is fine-tuned in various downstream tasks and has shown the strengths in language understanding and language generation
tasks.

BioVAE Our VAE-based pre-trained language model uses the OPTIMUS framework to train on a large amount of biomedical
text with 34M sentences from 3.35M PubMed abstracts. The pre-trained model is fine-tuned and shows SOTA in biomedical text
mining tasks as well enables to generate accurate biomedical texts.

“https://deepgenerativemodels.github.io/notes/introduction/
Shttps://openai.com/blog/generative-models/



F Training cost

In this work, we trained the OPTIMUS framework on a huge amount of data of 34M sentences. In terms of the model complexity, the
OPTIMUS is a combination of the two large neural-based models (BERT with 340M parameters, and GPT-2 with 1.5B parameters),
which result in a very large number of learning parameters.

For completing one BioVAE model that we released, we used 128 GPUs from the Al Bridging Cloud Infrastructure (ABCI).®
In order to use these computing resources, it costs approximately 2000 ABCI points (or 3,600 USD). Therefore, training such
large-scale models on a massive amount of text is costly. From using our BioVAE pre-trained models which are freely available,
people can apply for a specific downstream task or their own tasks without such a large cost to train the large scale model from
scratch.
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